A. Agazzi, J.-P. Eckmann, and G. M. Graf. The colored Hofstadter butterfly for the honeycomb lattice. Journal of Statistical Physics, 156(3):417–426, Aug 2014. URL:, doi:10.1007/s10955-014-0992-0.


M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, and I. Bloch. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Physical Review Letters, 111:185301, Oct 2013. URL:, doi:10.1103/PhysRevLett.111.185301.


M. Aidelsburger. Artificial gauge fields with ultracold atoms in optical lattices. PhD thesis, Ludwig Maximilian University of Munich, 2014. URL:


C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky, and H. Schweizer. Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance. Physical Review Letters, 86:147–150, Jan 2001. URL:, doi:10.1103/PhysRevLett.86.147.


B. Andrews and A. Soluyanov. Fractional quantum Hall states for moiré superstructures in the Hofstadter regime. Physical Review B, 101:235312, Jun 2020. URL:, doi:10.1103/PhysRevB.101.235312.


B. Andrews, M. Mohan, and T. Neupert. Abelian topological order of $\ensuremath \nu =2/5$ and $3/7$ fractional quantum Hall states in lattice models. Physical Review B, 103:075132, Feb 2021. URL:, doi:10.1103/PhysRevB.103.075132.


B. Andrews, M. Raja, N. Mishra, M. Zaletel, and R. Roy. Stability of fractional Chern insulators with a non-Landau level continuum limit. 2023. arXiv:2310.05758, doi:10.48550/arXiv.2310.05758.


A. Avila and S. Jitomirskaya. The Ten Martini Problem. Annals of Mathematics, 170(1):303–342, 2009. URL:, doi:10.4007/annals.2009.170.303.


J. E. Avron, D. Osadchy, and R. Seiler. A Topological Look at the Quantum Hall Effect. Physics Today, 56(8):38–42, Aug 2003. URL:, doi:10.1063/1.1611351.


J. E. Avron, O. Kenneth, and G. Yehoshua. A study of the ambiguity in the solutions to the Diophantine equation for Chern numbers. Journal of Physics A: Mathematical and Theoretical, 47(18):185202, Apr 2014. URL:, doi:10.1088/1751-8113/47/18/185202.


M. Y. Azbel. Energy spectrum of a conduction electron in a magnetic field. Journal of Experimental and Theoretical Physics, 19(3):634–645, 1964. URL:


D. Bauer, T. S. Jackson, and R. Roy. Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model. Physical Review B, 93:235133, Jun 2016. URL:, doi:10.1103/PhysRevB.93.235133.


D. Bauer, S. Talkington, F. Harper, B. Andrews, and R. Roy. Fractional Chern insulators with a non-Landau level continuum limit. Physical Review B, 105:045144, Jan 2022. URL:, doi:10.1103/PhysRevB.105.045144.


D. Bodesheim, R. Biele, and G. Cuniberti. Hierarchies of Hofstadter butterflies in 2D covalent organic frameworks. npj 2D Materials and Applications, 7(1):16, Mar 2023. URL:, doi:10.1038/s41699-023-00378-0.


J. P. Chen and R. Guo. Spectral decimation of the magnetic Laplacian on the Sierpinski gasket: solving the Hofstadter–Sierpinski butterfly. Communications in Mathematical Physics, 380(1):187–243, Nov 2020. URL:, doi:10.1007/s00220-020-03850-w.


M. Claassen, C. H. Lee, R. Thomale, X.-L. Qi, and T. P. Devereaux. Position-momentum duality and fractional quantum Hall effect in Chern insulators. Physical Review Letters, 114:236802, Jun 2015. URL:, doi:10.1103/PhysRevLett.114.236802.


N. R. Cooper, J. Dalibard, and I. B. Spielman. Topological bands for ultracold atoms. Reviews of Modern Physics, 91:015005, Mar 2019. URL:, doi:10.1103/RevModPhys.91.015005.


C. R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K. L. Shepard, J. Hone, and P. Kim. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 497(7451):598–602, May 2013. URL:, doi:10.1038/nature12186.


F. Di Colandrea, A. D’Errico, M. Maffei, H. M. Price, M. Lewenstein, L. Marrucci, F. Cardano, A. Dauphin, and P. Massignan. Linking topological features of the Hofstadter model to optical diffraction figures. New Journal of Physics, 24(1):013028, Jan 2022. URL:, doi:10.1088/1367-2630/ac4126.


N. Regnault. DiagHam. Code repository at, 2001.


L. Du, Q. Chen, A. D. Barr, A. R. Barr, and G. A. Fiete. Floquet Hofstadter butterfly on the kagome and triangular lattices. Physical Review B, 98:245145, Dec 2018. URL:, doi:10.1103/PhysRevB.98.245145.


A. Eckardt. Colloquium: atomic quantum gases in periodically driven optical lattices. Reviews of Modern Physics, 89:011004, Mar 2017. URL:, doi:10.1103/RevModPhys.89.011004.


F. T. P. Harper. The Hofstadter Model and Other Fractional Chern Insulators. PhD thesis, University of Oxford, 2015. URL:


T. Fukui, Y. Hatsugai, and H. Suzuki. Chern numbers in discretized Brillouin zone: efficient method of computing (spin) Hall conductances. Journal of the Physical Society of Japan, 74(6):1674–1677, 2005. URL:, doi:10.1143/JPSJ.74.1674.


R. Ghadimi, T. Sugimoto, and T. Tohyama. Higher-dimensional Hofstadter butterfly on the Penrose lattice. Physical Review B, 106:L201113, Nov 2022. URL:, doi:10.1103/PhysRevB.106.L201113.


N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman. Light-induced gauge fields for ultracold atoms. Reports on Progress in Physics, 77(12):126401, Nov 2014. URL:, doi:10.1088/0034-4885/77/12/126401.


K. Goudarzi, H. G. Maragheh, and M. Lee. Calculation of the Berry curvature and Chern number of topological photonic crystals. Journal of the Korean Physical Society, 81(5):386–390, Sep 2022. URL:, doi:10.1007/s40042-022-00530-x.


D. Gresch and A. Soluyanov. Calculating Topological Invariants with Z2Pack, pages 63–92. Springer International Publishing, Cham, 2018. URL:, doi:10.1007/978-3-319-76388-0_3.


P. G. Harper. Single band motion of conduction electrons in a uniform magnetic field. Proceedings of the Physical Society. Section A, 68(10):874, Oct 1955. URL:, doi:10.1088/0370-1298/68/10/304.


M. M. Hirschmann and J. Mitscherling. Symmetry-enforced double Weyl points, multiband quantum geometry, and singular flat bands of doping-induced states at the Fermi level. Physical Review Materials, 8:014201, Jan 2024. URL:, doi:10.1103/PhysRevMaterials.8.014201.


D. R. Hofstadter. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Physical Review B, 14:2239–2249, Sep 1976. URL:, doi:10.1103/PhysRevB.14.2239.


B. Andrews. HofstadterTools: A Python package for analyzing the Hofstadter model. Journal of Open Source Software, 9(95):6356, 2024. URL:, doi:10.21105/joss.06356.


T. S. Jackson, G. Möller, and R. Roy. Geometric stability of topological lattice phases. Nature Communications, 6(1):8629, Nov 2015. URL:, doi:10.1038/ncomms9629.


H. Jing-Min. Light-induced Hofstadter's butterfly spectrum of ultracold atoms on the two-dimensional kagomé lattice. Chinese Physics Letters, 26(12):123701, Dec 2009. URL:, doi:10.1088/0256-307X/26/12/123701.


P. J. Ledwith, A. Vishwanath, and D. E. Parker. Vortexability: A unifying criterion for ideal fractional Chern insulators. Physical Review B, 108:205144, Nov 2023. URL:, doi:10.1103/PhysRevB.108.205144.


C. H. Lee, M. Claassen, and R. Thomale. Band structure engineering of ideal fractional Chern insulators. Physical Review B, 96:165150, Oct 2017. URL:, doi:10.1103/PhysRevB.96.165150.


B. Mera and J. Mitscherling. Nontrivial quantum geometry of degenerate flat bands. Physical Review B, 106:165133, Oct 2022. URL:, doi:10.1103/PhysRevB.106.165133.


H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Burton, and W. Ketterle. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Physical Review Letters, 111:185302, Oct 2013. URL:, doi:10.1103/PhysRevLett.111.185302.


T. Neupert, L. Santos, C. Chamon, and C. Mudry. Fractional quantum Hall states at zero magnetic field. Physical Review Letters, 106:236804, Jun 2011. URL:, doi:10.1103/PhysRevLett.106.236804.


X. Ni, K. Chen, M. Weiner, D. J. Apigo, C. Prodan, A. Alù, E. Prodan, and A. B. Khanikaev. Observation of Hofstadter butterfly and topological edge states in reconfigurable quasi-periodic acoustic crystals. Communications Physics, 2(1):55, Jun 2019. URL:, doi:10.1038/s42005-019-0151-7.


G.-Y. Oh. Energy spectrum of a triangular lattice in a uniform magnetic field: effect of next-nearest-neighbor hopping. Journal of the Korean Physical Society, 37:534–539, 11 2000. doi:10.3938/jkps.37.534.


K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein. Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. Physical Review Letters, 95:010403, Jun 2005. URL:, doi:10.1103/PhysRevLett.95.010403.


S. A. Parameswaran, R. Roy, and S. L. Sondhi. Fractional quantum Hall physics in topological flat bands. Comptes Rendus Physique, 14(9):816–839, 2013. Topological insulators / Isolants topologiques. URL:, doi:


R. Peierls. Zur Theorie des Diamagnetismus von Leitungselektronen. Zeitschrift für Physik, 80(11):763–791, Nov 1933. URL:, doi:10.1007/BF01342591.


A. Pena. Control of spectral, topological and charge transport properties of graphene via circularly polarized light and magnetic field. Results in Physics, 46:106257, 2023. URL:, doi:


J. Lado. Pyqula. Code repository at, 2021.


R. Rammal. Landau level spectrum of Bloch electrons in a honeycomb lattice. Journal De Physique, 46(8):1345–1354, 1985. URL:, doi:10.1051/jphys:019850046080134500.


P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas, A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J. Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis, and J. Martinis. Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 358(6367):1175–1179, 2017. URL:, doi:10.1126/science.aao1401.


R. Roy. Band geometry of fractional topological insulators. Physical Review B, 90:165139, Oct 2014. URL:, doi:10.1103/PhysRevB.90.165139.


S. Roy, M. Kolodrubetz, J. E. Moore, and A. G. Grushin. Chern numbers and chiral anomalies in Weyl butterflies. Physical Review B, 94:161107, Oct 2016. URL:, doi:10.1103/PhysRevB.94.161107.


R. Sahay, S. Divic, D. E. Parker, T. Soejima, S. Anand, J. Hauschild, M. Aidelsburger, A. Vishwanath, S. Chatterjee, N. Y. Yao, and M. P. Zaletel. Superconductivity in a topological lattice model with strong repulsion. 2023. arXiv:2308.10935, doi:10.48550/arXiv.2308.10935.


I. I. Satija. Butterfly in the Quantum World. 2053-2571. Morgan & Claypool Publishers, 2016. ISBN 978-1-6817-4117-8. URL:, doi:10.1088/978-1-6817-4117-8.


D. Shaffer, J. Wang, and L. H. Santos. Theory of Hofstadter superconductors. Physical Review B, 104:184501, Nov 2021. URL:, doi:10.1103/PhysRevB.104.184501.


B. Simon. Schrödinger operators in the twenty-first century, chapter, pages 283–288. World Scientific, 2000. URL:, doi:10.1142/9781848160224_0014.


A. Soluyanov. Topological aspects of band theory. PhD thesis, Rutgers University, 2012. URL:


A. Stegmaier, L. K. Upreti, R. Thomale, and I. Boettcher. Universality of Hofstadter butterflies on hyperbolic lattices. Physical Review Letters, 128:166402, Apr 2022. URL:, doi:10.1103/PhysRevLett.128.166402.


P. Streda. Theory of quantised Hall conductivity in two dimensions. Journal of Physics C: Solid State Physics, 15(22):L717, Aug 1982. URL:, doi:10.1088/0022-3719/15/22/005.


J. Hauschild and F. Pollmann. Efficient numerical simulations with Tensor Networks: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes, pages 5, 2018. Code available from URL:, arXiv:1805.00055, doi:10.21468/SciPostPhysLectNotes.5.


D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized Hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49:405–408, Aug 1982. URL:, doi:10.1103/PhysRevLett.49.405.


H. Tian, X. Gao, Y. Zhang, S. Che, T. Xu, P. Cheung, K. Watanabe, T. Taniguchi, M. Randeria, F. Zhang, C. N. Lau, and M. W. Bockrath. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature, 614(7948):440–444, Feb 2023. URL:, doi:10.1038/s41586-022-05576-2.


J. Vidal, R. Mosseri, and B. Douçot. Aharonov-Bohm cages in two-dimensional structures. Physical Review Letters, 81:5888–5891, Dec 1998. URL:, doi:10.1103/PhysRevLett.81.5888.


J. Wang, J. Cano, A. J. Millis, Z. Liu, and B. Yang. Exact Landau level description of geometry and interaction in a flatband. Physical Review Letters, 127:246403, Dec 2021. URL:, doi:10.1103/PhysRevLett.127.246403.


G. H. Wannier. A result not dependent on rationality for Bloch electrons in a magnetic field. physica status solidi (b), 88(2):757–765, 1978. URL:, doi:10.1002/pssb.2220880243.


Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A. Soluyanov. WannierTools: An open-source software package for novel topological materials. Computer Physics Communications, 224:405–416, 2018. URL:, doi:10.1016/j.cpc.2017.09.033.


Y. Xiao, V. Pelletier, P. M. Chaikin, and D. A. Huse. Landau levels in the case of two degenerate coupled bands: Kagomé lattice tight-binding spectrum. Physical Review B, 67:104505, Mar 2003. URL:, doi:10.1103/PhysRevB.67.104505.


Y. Yang, B. Zhen, J. D. Joannopoulos, and M. Soljačić. Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs. Light: Science & Applications, 9(1):177, Oct 2020. URL:, doi:10.1038/s41377-020-00384-7.


F. Yilmaz and M. Ö. Oktel. Hofstadter butterfly evolution in the space of two-dimensional Bravais lattices. Physical Review A, 95:063628, Jun 2017. URL:, doi:10.1103/PhysRevA.95.063628.


J. Zak. Magnetic translation group. Physical Review, 134:A1602–A1606, Jun 1964. URL:, doi:10.1103/PhysRev.134.A1602.


Y. Zhang, N. Manjunath, G. Nambiar, and M. Barkeshli. Fractional disclination charge and discrete shift in the Hofstadter butterfly. Physical Review Letters, 129:275301, Dec 2022. URL:, doi:10.1103/PhysRevLett.129.275301.


Y. Zhang, N. Manjunath, G. Nambiar, and M. Barkeshli. Quantized charge polarization as a many-body invariant in $(2+1)\mathrm D$ crystalline topological states and Hofstadter butterflies. Physical Review X, 13:031005, Jul 2023. URL:, doi:10.1103/PhysRevX.13.031005.


Y. Zhang, N. Manjunath, R. Kobayashi, and M. Barkeshli. Complete crystalline topological invariants from partial rotations in $(2+1)\mathrm D$ invertible fermionic states and Hofstadter's butterfly. Physical Review Letters, 131:176501, Oct 2023. URL:, doi:10.1103/PhysRevLett.131.176501.


O. Zilberberg, S. Huang, J. Guglielmon, M. Wang, K. P. Chen, Y. E. Kraus, and M. C. Rechtsman. Photonic topological boundary pumping as a probe of 4D quantum Hall physics. Nature, 553(7686):59–62, Jan 2018. URL:, doi:10.1038/nature25011.